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Synopsis 
A simple analytical form of induced anisotropy of heat conductivity ki j (h ,h ,h ,T)  

of initially isotropic polymer solids resulk from employing the simplified theory of the 
three-chaii model of the non-Gaussian network. The analytical form appears to  be 
valid up to a stretch ratio of A = 2.65, which is the limit of existing experimental data. 
The effect of induced anisotropy on the temperature distribution, due to  the large 
deformations, is illustrated for a highly expanded spherical shell and a cylindrical tube 
under a steady-state heat flow using the derived analytical form of the strain-dependent 
heat conductivity. 

INTRODUCTION 
The induced anisotropic behavior of highly deformed polymer solids 

which were initially isotropic is caused by orienting the links of the polymer 
chain in the direction of stretch. The degree of anisotropy may depend on 
the monomer structure, but it depends mostIy on the degree of deformation 
and thus orientation. 

It is generally considered' that thermal energy is transmitted more readily 
along the polymer molecular chains than between molecules. Hence, it is 
reasonable to assume that there will be an induced anisotropy of heat 
conductivity for highly stretched polymer solids which will depend on the 
strain and the absolute temperature T; thus, the heat flux will be propor- 
tional to the temperature gradient T, j .  However, the constant of propor- 
tionality k i j ,  i.e., the heat conductivity, may depend on the strain and tem- 
perature. Therefore, we assume that the law of heat conduction is given by 

h' = kff(ykl ,T)T,;  (1) 

where h' is a contravariant component of heat flux vector defined by unit 
area of deformed body and k'f is the contravariant component of the ten- 
sorial induced anisotropic heat conductivity, both defined with respect to 
the imbedded curvilinear coordinate 8' in the deformed state. The strain 
tensor yf j  is definedg by 

(2) ru = '/Z(Gfj - su) 
where the tensor gfj is a covariant metric of the imbedded curvilinear 
system 8' of the undeformed body defined with respect to the material 
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Cartesian system X i .  Similarly, Gtj  is the corresponding covariant metric 
of the imbedded curvilinear system 0 ;  of the deformed body defined with 
respect to the'spatial Cartesian system Y ; .  At the undeformed state, the 
form of the heat conductivity function degenerate to  k'j = k e d j ,  where 
ko is an isotropic Fourier heat conductivity. 

In  contrast to our basic assumption, i t  has been shown in the theory of 
nonlinear thermoelasticity that if one assumes the heat flux vector hi to be a 
function both of the deformation gradient dYk/bXl and of the temperature 
gradient T l k  5 bT/bY, ,  i.e., 

and also assumes the material to be initially isotropic, then by considering 
that the constitutive relation is invariant under superposed arbitrary rigid 
rotation of a spatial frame of reference, one obtains2Ba 

ksj hail 4- k1B;j 4- k2B;kBkj (5) 

and ko, k1, and k2 are polynomial functions of the seven joint invariants 
(11, 1 2 ,  1 3 .  . .I?) of Bkl = ( b Y k / b X f ) ( b Y J b X , )  and T,,; af j  is a Kronecker 
delta. I n  this expression, even though eq. (4) is quite similar in appearance 
to  the form of Fourier heat law, because of having the temperature gradient 
T, ;  explicitly expressed, i t  should be noted that if the body is not deformed) 
i.e., Bkl  = 6 c l ,  eq. (4) becomes 

h; = k ( 1 4 . .  .I?)T,, (6)  

where 14 = IS = l a  = I7 = T,,T,,.  But this result contradicts the experi- 
mental observation that the heat flux is proportional to the temperature 
gradient, which requires that k should be independent of the temperature 
gradient T,;. Thus, we assume eq. (1) directly for a highly deformed body. 

In  what follows we will show that, starting with eq. (1) and using the 
assumption of the simplified network theory of rubber-like elasticity of the 
three-chain model of Gaussian and non-Gaussian chains,' we obtain a 
simplified heat conduction equation. This equation described quite well 
the experimental data of the heat conductivity of poly(methy1 methacryl- 
ate) (PMMA) and poly(viny1 chloride) (PVC) under large unaxial stretch, 
as obtained by Hellwege, Hennig, and Knappe.s Moreover) i t  provides a 
method which can be conveniently used to obtain an analytic form of the 
constitutive law of heat conductivity which is useful in the engineering 
analyses of boundary value problems. This is illustrated by showing the 
effects, due to the deformation on the temperature distribution under 
steady-state heat flow, in a highly expanded spherical shell and in a simul- 
taneously extended and inflated cylindrical tube. 
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HEAT CONDUCTION LAW 
We consider that an isotropic, homogeneous incompressible polymer 

solid before deformation will obey the classical Fourier heat law with an 
isotropic conductivity ko which, in general, depends on the absolute tem- 
perature, pressure, etc., but not on temperature gradients. When the solid 
is deformed, the heat conductivity is no longer isotropic and becomes 
anisotropic. We call this an induced anisotropic heat conductivity. We 
extend the Fourier heat law for this highly deformed body by assuming that 
the heat flux is proportional to the temperature gradient, but that the 
constant of proportionality k i j  (heat conductivity) may depend on the 
strain * I r j  and the temperature T .  Thus, we assumed the heat conduction 
equation 

Noting that k f j  is a tensorial function of the tensor variable T k I ,  one may 
write that 

where F(Tkg,T) is a scalar function of the tensor variable T k l ,  i.e., the induced 
anisotropic heat conductivity can be derived from a certain scalar function 
of the tensor variable T k t .  Since the polymer solid is iilitially isotropic 
and incompressible, the function F(Tkz ,T)  can be expressed by two principal 
invariants of Y k l ,  i.e., 11 and 12, '  or by three principal stretch ratios XI,  -yz, 
and XI; i.e., F = F(Xl,kZ,X3,T), where II = X12 + Xz2 + h2 and 1 2  = X I ~ X Z ~  + 
XZ2X3' + h 2 X l 2 .  (Note that Xi here is a general stretch ratio and may be 
dependent on position in an inhomogeneous deformation, a point which will 
be utilized subsequently. For a homogeneous deformation, as in the 
deformation a cube, Xi  is the usual ratio of deformed to  undeformed length 
and is independent of position in the body.) 

Next, we postulate that the function F(X1,X2,Xa,T) is a symmetric, 
separable function of XI, h2 and X3, i.e., 

This postulate is based on the following assumptions: 
1. The thermal energy can be transmitted more readily along the polymer 

molecular chains than between molecules.' In the undeformed state, this 
transmission will average out and a conductivity will be isotropic. In  the 
deformed state, however, this will no longer be true but will depend on the 
average deformation, i.e., orientation, along a given direction. The general 
calculation of the orientation is not necessary, however; for Treloar has 
shown that the deformation of chain in a polymer network can be resolved 
into the deformations of three equivalent chains, one lying along each 
principal coordinate direction. This implies that the contribution to the 
conductivity can similarly be resolved into components along the principal 
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coordinate directions, and so we therefore assume the scalar function 
F(AI,A&,T) can be reduced to three independent sets. 

Since 
the material is initially isotropic, all material functions of the deformed 
body must be symmetrical with respect to the three principal stretch ratios 
XI. Incorporating this requirement with the assumption of three separate 
independent sets, we have the separable, symmetrical function of eq. (8). 

The three principal values y, and three sets of principal directions 
a(,) (a = 1,2,3) of the strain tensor y f j  in a spatial coordinate system can 
be obtained from the following equations: 

2. The polymer solid is incompressible and initially isotropic. 

T*jNf(,) = r(,”) (9) 
or 

[G”rt, - Y(p)vlNj(p) = 0 (10) 

Gd‘(a)N’(B) = 6 ,~ -  (11) 

where 

A nontrivial solution of eq. (10) exists if the coefficient determinant (the 
characteristic determinant) is equal to zero, i.e., 

1G”yij - 7S;l = 0. (12) 

Expansion of this determinant gives a cubic equation in y, and the solution 
of the cubic equation gives three principal values y(,) (a = 1,2,3) which can 
also be expressed with respect to the stretch ratio A,, i.e., 

y, = ‘/2 (1 - A,-*) (a = 1,2,3) (13) 

where y, in eq. (13) are equivalent to the principal strains of the Almansi- 
Hamel strain tensor. Also, from eq. (lo), eq. ( l l ) ,  and r,, we may obtain 
three sets of principal direction m, (a = 1,2,3). Note that from eq. (91, 
one may obtain the following relation: 

(14) y, = yfj Nf(,) Nj(,) (a not summed). 

Thus, eq. (7) may be written aa 

With eqs. (15), (14), (13), and (8), one obtains 

where 
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Thus, the heat conduction equation is given by 
3 

h' = [ a = l  c XaY,(Xa> Nib) "(.,I T, j .  (17) 

For X, = 1 (a! = 1,2,3), i.e., without deformation, eq. (16) becomes 
3 

a = l  
k" = ko C N i ( a )  Nj(=)  = hGi j  = h i j  (18) 

where ko = f'(1) and g i j  = Gij in the undeformed state, and eq. (17) be- 
comes 

which is the claasical Fourier heat law of an isotropic solid. 

EXPERIMENTAL DETERMINATION OF THE ANALYTICAL FORM 
OF THE INDUCED AMSOTROPY OF HEAT CONDUCTMTY 

For uniaxial deformation, we identify 0' = Y,; thus, we have Gij = 
Gi j  = &,. The principal direction fl(-) of simple extension in a spatial 
Cartesian coordinate system is given by 

N p  = (l,O,O), N p  = (O,l,O), Ni'3) = (O,O,l). (20) 

(21) 

kn = kas = X2afl(X2) k I (22) 

Substituting eq. (20) into eq. (16), one obtains 

kll = X13f'(X1) 5 kll 
and 

where XI and N ( l )  are parallel to the direction of stretch; A2 and f l ( 2 )  are 
perpendicular to the stretch. Since kll is the heat conductivity parallel to 
the stretching direction, for convenience we denote klI = k11. Since kn is 
perpendicular to the direction of stretch, we denote k l  = k22. 

The experimental results of Hellwege, Hennig, and Knappe; who mea- 
sured the anisotropy of thermal conductivity in uniaxially stretched 
polymer solids (see Fig. l ) ,  show that for PMMA and PVC, the relative 
thermal conductivity along the uniaxially stretched direction depends al- 
most linearly on the stretch ratio X1. (The heat conductivity of polystyrene 
in their paper is not considered here, since we suspect that because of the 
small effect of strain on heat conductivity, the experimental error may be 
relatively large.) Hence, 

!!I = 1 + C(A1 - 1) 
ko 

(234 

or 
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Fig. 1. Relative thermal conductivity of miaxially stretched polymers (after Hell- 
I (  = Parallel to the direction of stretch; 1 = perpen- wege, Hennig, and Knappeb). 

dicular to the direction of stretch. 

where ko is the heat conductivity before deformation and C is the slope of 
the fitted lines. It has a value of 0.165 and 0.44 for PMMA and PVC, 
respectively. Note that ko and C may be dependent on temperature. 
From eqs. (23) and (21), we obtain, after integration, 

(24) 

Then, from Eq. (8), we have 

Since the analytical expression of eq. (25) waa obtained from the measure- 
ment of the heat conductivity parallel to the stretched direction alone, 
then, in order to test its validity or the applicability of postulate eq. (16), 
we may use eq. (25) to predict the heat conductivity perpendicular to the 
stretched directions, i.e., k l  . To do so, we substitute eq. (25) into eq. (16) 
and obtain 

k l  E k 2 2  = b [ l  + C(X2 - l ) ] .  (26) 

Since the material is incompressible, i.e., h&Z = 1 under a uniaxial stretch, 
we have 
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Equation (27) is compared with the experimental data in Figure 1, and it 
can be seen that the theoretical curves predict the experimental data quite 
well (see lower part of Fig. 1). 

TEMPERATURE DEPENDENCE OF INDUCED ANISOTROPIC 
HEAT CONDUCTIVITY DUE TO LARGE STRAIN 

Figure 2 shows the thermal conductivity of stretched PVC as a function 
of temperature at different elongations. At zero stretch, the thermal 
conductivity is almost independent of temperature; however, for the 
stretched sample, it  becomes dependent on temperature, and the depen- 
dence is almost linear with respect to the change of temperature. Thus, we 
write 

C = a + b T  (28) 

(29) 

and so eqs. (23) and (27) become 

k// = ko[l + (a  + b T ) ( h  - l)]  

(A - 91 k l  = ko [l + (a  + bT) 

respectively, where ko = constant = 4 X  lo-' cal/"C-cm-sec. The values 
of the constants a and b are found from the topmost curve kll at X = 2.65 to 
be 0.395 and 0.97X10-3j0C, respectively. Now, using these values of a 
and b in eqs. (29) and (30), we calculate the remaining curves in Figure 2. 

0 

A1 - 1.85, II c 

UNSTRETCHED, A1 = 1 

XI - 
0 0 

1.85, I 
Y "  0 - 

A1 - 2 . 6 6 . O l  
" - * 

-20 0 M 40 
TEMPERATURE 1 'C 

Fig. 2. Coupling effect of large strain and temperature on thermal conductivity (after 
Hellwege, Hennig, and Knapw); (0) experimental data; (-) calculated. 
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It can be seen that the calculated curves predict quite well the experimental 
data in this temperature range, i.e., approximately -2OOC to +50°C. 
Thus, the postulated form of the heat conductivity law not only describes 
the dependence on strain alone, but also that dependence coupled with 
temperature. 

INDUCED ANISOTROPIC BEHAVIORS OF HEAT 
CONDUCTIVITY UNDER MULTIAXIAL DEFORMATION 

The more stringent test of the validity of eq. (16) will come from predict- 
ing the heat conductivity in multiaxial deformations.' With this in mind, 
we calculate the anisotropic behavior of the heat conductivity under strip 
biaxial (pure shear) deformation and equal biaxial deformation in accord- 
ance with eq. (25), which was obtained from the simple extension experi- 
ments. 

For strip biaxial deformation, the heat conductivity perpendicular to 
stretch direction X I  is given by 

( k 1 ) S B  = ko[l + C(X8 - I)] = ko 1 + C - - 1 [ c1 >I (31) 

[ (:II >I (32) 

where iz = 1. For equal biaxial deformation, it is given by 

( k l ) B B  = ko[l + c(k3 - I ) ]  = 1 + c - - 1 

where X I  is the stretched direction and Xa is the contracted direction per- 
pendicular to il. 

Since the deformation state of equal biaxial deformation is equivalent to 
simple compression for incompressible material, we note that (kll) simple 
compression = ( k l )  equal biaxial. Using the C value obtained from 
Figure 1, the numerical values of ( k l ) s B  and ( k l ) B B  for PVC and PMMA 
are shown in Figures 3 and 4, respectively. It should be emphasized 

X i  (STRZICH RATIO) 

Fig. 3. Relative thermal conductivity of stripbiaxially stretched polymers. 
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Fig. 4. RRlative thermal conductivity of equal-biaxially stretched polymers. 

that Figure 3 and 4 are not experimental curves but calculated ones. They 
are shown here partially to illustrate the dependence of k on X in various 
deformation fields and partially in the hope of stimulating experimental 
work in this area. 

TEMPERATURE DISTRIBUTION IN A HIGHLY INFLATED 
SPHERICAL SHELL AND CYLINDRICAL TUBE 

Symmetrically Inflated Spherical Shell 

It is of interest to observe the effect of the deformation-induced ankot- 
ropy of heat conductivity on the temperature distribution in a highly 
inflated spherical shell by using eq. (25) for the analytical expression for F 
and thus to compare the results with those without an induced anisotropy 
effect. Since the induced anisotropy effect is a function of deformation, the 
temperature distribution and heat flux will be markedly affected by defor- 
ma tion. 

Consider a thick-walled spherical shell of an incompressible material 
which is expanded symmetrically with respect to its center. The unde- 
formed state of internal radius r~ and external radius r? are 1 and 5 units, 
i.e., r1 = 1, r2 = 5 .  The spherical shell undergoes symmetric expansion 
until the inner radius reaches a value of 5 ,  i.e. R1 = 5 .  Since the material is 
totally incompressible (ie., mechanically and thermally incompressible), 
the outer radius Rz = 3i/R13 + r2a - r13 = 34249, i.e., a -  ____- 

9-1 = 1 
r2 = 5 Deformed State g: I 'm 'v 6.29 Undeformed State 
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In  our proposed problem, we consider only the steady-state heat flow. We 
assume that the temperature varies radially, i.e., T = T(R) and hi = 
h‘(R). The boundary conditions in the deformed state are given by T = 
100°C a t  R = R1 (inner radius) and T = 0°C at R = Rz (outer radius). 

The energy equation for the nonlinear thermoelastic theory is given2-3 by 

where D/Dt denotes a material derivative with respect to time t ,  h‘ is a 
contravariant component of heat flux, and ; denotes the covarient deriva- 
tive with respect to a system of embedded curvilinear coordinates Of  in the 
deformed state; A is a specific free energy which is a function of the strain 
invariants and absolute temperature. Equation (34) is a highly nonlinear 
partial differential equation. Since we consider only the steady-state heat 
flow, eq. (34) becomes 

or 
h‘;i = 0 (354 

(35b) hf,r + I’aifha = 0 
where I-,,‘ is the second kind of Christoffel symbol. 

For symmetrical expansion of a thick spherical shell, we take the im- 
bedded curvilinear coordinate system 8: in the strained body to  be a system 
of spherical polar coordinates (R,8,+). Thus, the metric tensor is given by 

Ga = [‘ 0 R2 x 1, G * =  
0 0 R2sin28 0 0 -1 1 

- R2sin28 
We assume that the displacement of the unstrained body possesses spherical 
symmetry, so that the point (R,e,+) was originally a t  the point (r,e,+). We 
note 

Q(R) = r/R (37) 
for convenience in the algebra. 
incompressible, we have 

Thus, 

Because we assume the material to be 

r3 - Ra = r13 - R2. (38) 

The metric tensor of the undeformed body is given by 

0 0-  R2Q2sin28J 

Q‘ 0 0 

0 
1 

0 -  R2Q2 
1 

R2Q2sin28 
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Now we are going to employ eq. (12) to obtain the principle strain y p  and the 
principal direction f l u .  From eqs. (26) and (40), we obtain 

0 1 - Q z  

0 

Thus, substituting eq. (41) into eq. (12), we obtain 

1 
2 

7 3  7 = - (1 - Q') (42) 

since 
7,  = '/2 (1 - A,-'). 

Thus, in terms of the (general) extension ratios, we have 

(43) R3 
1 

X I  = A(@) = A3 f A(+) = - = (1 + 
Q 

The corresponding principal directions in the spatial coordinate system 
can be obtained by using eqs. (lo), (1 1), (40), and (41). That is, 

N(1)' G N ( R ) '  = (1,  0, 0) 

bT bT 
ae ae Since we assume T = T(R) ,  T l z  = - = 0 and T,a  = - = 0. 

Hence, with eqs. (17) and (44), one obtains 

Substituting eq. (24) or eq. (25) into eq. (45), one obtains 

(46) 
dT 

h' = ko[l + C(X(R) - 111 

or, substituting for A ( R )  according to  eq. (43), 

Ti3  - Ri")"' - 1]} dT 
h' = ko (1 + c [(l + Ra dR (47) -. 

Here, for simplicity, we assume ko and Care independent of temperature. 
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Now consider eq. (35b). The nonzero components of rr j *  are 

(48) rzsa = - R1 sin 8 
cos 8 1 

r122 = rI33 = - 

and, since h2 = h3 = 0, eq. (35) becomes 

dh' 2 
- + - h l = O .  
dR R (49) 

In  the spherical coordinate, i t  is easy to  show that h' = hl, i.e., contra- 
variant components and covariant components of x1 are the same. 

Substituting eq. (47) into eq. (49), one obtains 

dR [{l + c[(1 + ;)"I - l]} g] 
+ 2 ( 1 + C [ ( l + ; ) Y ' - l ] g }  R = O  (50) 

where a = r13 - R13 = 1 - 125 = - 124. The solution of eq. (50) is given 
by 

where K1 and K2 are integration constants which can be determined by 
boundary conditions. 

The boundary conditions are 

T = 100°C at R = R1 = 5 (inner radius) 

T = 0°C at R = R2 = 4K9 (outer radius). 

(524 

(52b) 

From the boundary condition (52b), we have K z  = 0. Thus, eq. (51) 
becomes 

(53) 
dx 

. . f R y m y z  x2{1 + C [(l - 124/x3)'/' - 11)' 
T = K1 

Now we would like to investigate the effect of the material constant C on 
the temperature distribution. We consider three values of C ,  i.e., C = 0 
(i.e., no anisotropic effect), C = 0.5, and C = 1.0. Since the integral eq. 
(53) is not integrable by analytical means, we employ a numerical method 
to  obtain the results which are shown in Figure 5: The anisotropic effect on 
temperature distribution is markedly shown. The dashed line indicates the 
temperature distributions to be expected for a simple slab which is equiva- 
lent to  spherical shell with an infinite radius of curvature. The difference 
between this line and the solid one labeled C = 0 shows the usual effect of 
specimen geometry when there is no anisotropy effect; with increasing c, 
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OUTER SURFACE R2 - (a& INNER SURFACE R1 - 5.0 

R (RADIUS)+ 

Fig. 5. Temperature distribution in a highly expanded spherical shell. 

the discrepancy becomes progressively larger until, for C = 1, it approaches 
30". 

Simultaneous Extension and Inflation of a Cylindrical Tube 

Consider a thick cylindrical tube which in the unstrained state has a 
length Lo and has internal and external radii rl = 2 and r2 = 6 units, 
respectively. The tube is strained by a uniform simple extension with 
extension ratio = 2 and by symmetric expansion with respect to the 
cylindrical axis until the inner radius reaches a value of 6 ,  i.e., R1 = 6. 
Since the material is incompressible, we have 

Lo(R7.22 - *?-I ) - - XLO(*Rz2 - TRI'). (54) 

Thus, we have 
- 

Rz = d ( r Z 2  - r12)/X + R12 = d(SZ - 2 9 / 2  + 62 = d 5 2  'V 7.2111 

i.e., 

Undeformed State rl = 2 Deformed State RI = 6 
Length = LO rz = 6 Length = 2L0 } Rz = d% = 7.211 

In this illustrative problem, we consider only the steady-state heat flow. 
We again assume that the temperature varies only along the radius of the 
tube, i.e., T = T(R) .  The boundary conditions in the deformed state are 
given by T = 100°C at R = R1 (inner radius) and T = 0°C a t  R = Rz 
(outer radius). 
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The imbedded curvilinear coordinate system 8' in the strained state of the 
cylinder is taken to be a system of cylindrical polar coordinates (R,B,Z). 
Then the point (R,O,Z) was initially a t  the point (r,e,Z/X), where r is a 
function of R only. The metric tensor of the strained body is given by 

1 0 0  

G ,  = [: 0 R2 1 0 :]. G* = [. O] (55) 

0 0 1  

and the metric tensor of the unstrained body is given by 

gu = 
0 0 -  

0 0 A2 

where rR = dr(R)/dR. The mixed strain tensor is given by 

ri - t l p 2  o 0 1  

l o  
Following procedures similar to those used in a previous problem, we obtain 
three principal strains : 

From eq. (13), we have three stretch ratios: 

(59) 
1 R 

T R  T 

Since the material is incompressible, we have the following relation : 

X(R) = -J X(e) = -9 X(z) = X. 

or 
dr 
dR 

T - = RX. 

The solution is given by 

r2 = xR2 + (r12 - xR1*) = xR2 + a 
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iY(0)' N(z)' = (1, l/R,O) 
N ( Z , !  = N(3)' = (0,0,1) 

* (63) 

dh' 1 
- + - h1 = 0. 
dR R (67) 

Substituting eq. (65) into eq. (67), we obtain 

using 

(69) 
1 T (m2 + u)l/z 

TR RA RX 

which is obtained from eqs. (59), (61), and (62). 

= - = - = 

The solution of eq. (68) is given by 

dx  
T = A2kl L L  11 + c [(Ax2 + - I]]  x + Kz (70) 

where X = 2, a = -68. The thermal boundary conditions are 

T = 100°C a t  R = R1 = 6 (inner radius) 

T = 0°C a t  R = Rz = 43 (outer radius). 
(714 

(71b) 
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Fig. 6. Temperature distribution in a highly expanded and stretched 
long cylindrical tube. 

From (71b), we have KZ = 0. Thus, eq. (70) becomes 

The temperature distribution in the expanded, stretched cylindrical shell 
is shown in Figure 6 for three values of C,  i.e., C = 0, C = 0.5, and C = 1.0. 
The results are similar to those of Figure 5.  

More general cases can be treated in the above manner too, e.g., those in 
which the temperature depends on the R,Z coordinates, T = T(R,Z) .  The 
solution is more involved, therefore we will only set up such a problem as an 
illustration of our approach and for comparison with the ordinary heat 
conduction problem. 

Consider the case that T = T(R,Z) ,  or bT/bR # 0, dT/dZ # 0 but 
bT/& = 0. Then, from eqs. (17) and (63), we obtain 

h2 = h(@ = 0 (73) 
bT 

ha = h ( Z )  = ko[l + C(X(Z) - l)]  

where 
With eqs. (35) and (66), one obtains 

= [(ARz + a)'/']/RX as given by eq. (69), and = h = 2. 

1 
h',l + h8,a + 2 h' = 0. (74) 
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Substituting eq. (73) into eq. (74), one obtains 

Using the methad of separation of variables, one assumes 

T(R,Z)  = X ( R ) Y ( Z ) .  (76) 

Substituting eq. (76) into eq. (75), one obtains 

Since the left side of eq. (77) is a function of R alone, while the right-hand 
side is a function of Z alone, it follows necessarily that both sides must be 
equal to a constant 7 ,  i.e., 

d2Y 
d Z 2  + C ( b ,  - 1)1 - = +OY(Z) .  

(78) 

(79) 

Note that, when C = 0, eq. (78) becomes a Bessel’s equation of zero order. 

SUMMARY 

By employing the postulates that the thermal energy could be trans- 
mitted more readily along the polymer molecular chains than between 
molecules and that the non-Gaussian chain network may be represented by 
three-chain model, one greatly simplifies the method needed to characterize 
the induced anisotropic heat conductivity of polymeric materials. If the 
induced anisotropic heat conductivity is expressed in terms of invariants 
II,.. ., I,, then the equations offered to characterize it are complex and 
difficult to use. One needs not only multiaxial deformation experiments, 
but also close control of many variables. Obviously, the latter is a difficult, 
if not insurmountable, task in the eyes of the experimentalist. Our theory 
gives a very efficient and simple way to circumvent these difficulties. 

The last two sections offer the numerical calculations of relative heat 
conductivities and temperature distributions. The theory is shown to be 
readily extendable to multiaxial deformation fields. It is shown that the 
results of the equal biaxial and strip biaxial deformations might be used to 
give a stringent test to the theory. The calculations of temperature distri- 
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Fig. 7. Relative thermal conductivity of uniaxially stretched vulcanized rubber 
(after Tauti'). 

bution in highly expanded spherical shells and cylindrical tubes are used 
to illustrate the effect of the induced anisotropy on the temperature distri- 
bution. For a more complex case of temperature varying along two 
coordinates, a sample problem is formulated to indicate the procedure that 
one might follow. 

As demonstrated here, in analysis of heat transfer in these materials, the 
induced anisotropy heat conductivity law plays a significant role. It is 
generally expected that the effects of orientation on heat conductivity of a 
melt are to be similar to the effects on a solid, amorphous polymer. Hence, 
our theory may be used to calculate the required heat transfer for such 
chemical processes, i.e., extrusion and blow molding of polymer melts which 
are under both shearing and stretching and are significantly oriented. 
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T = 25'C 
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Fig. 8. Relative thermal conductivity of uniaxially stretched Neoprene and Hypalon 
(after Hennig and Knappe7). 

Appendix 
Note that  the analytic form of eq. (25) is not the only one we should consider. One 

may obtain a different expression for different kinds of elastomers. The essence of this 
paper is that the heat conduction law of elastomeric materials can be expressed by eq. 
(17) through the postulation of (8), i.e., 

where the analytic expression of f(h) will depend on the specific material which we 
characterize. For example, from the data of Taut26 on the induced anisotropic heat 
conductivity of vulcanized rubber parallel to  the stretched direction, we find that the 
analytic expreasion of kll for lightly vulcanized rubber (Fig. 7) can be expressed by the 
following equation: 

kll = XIy'(X1) = ko[l + 0.9(X1 - 1)'"Q I. (80) 

Thus, after integrating eq. (80), and substituting it into eq. (8), we obtain 

From eqs. (81) and (16), we have 

k l  = X Z Y ( X 2 )  = ko[l + 0.9(k* - 1)'.'9] = ko[l + O.9(l/fi1 - 1)'.'9]. (82 ) 

Here we note again that the direction of h, is perpendicular to the stretching direction XI. 
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In another example, we consider the data of Hennig and Knappe7 on Neoprene and 

(83 ) 

Hypalon. We find from Figure 8 that 

k l  = X p y ' ( X ~ )  = ko[l - C(X, - l)] 
or 

where C is the slope of the straight lines. 
stituting into eq. (8), we have 

Thus, after integrating eq. (84) and s u b  

The heat conductivity parallel to the stretch direction then is given by 

kll = ko[l - C(I/XI' - I)]. 

* This paper represents one phase of research carried out by the Jet Propulsion 
Laboratory, California Institute to Technology, Pasadena, California, sponsored by the 
National Aeronautics and Space Administration under Contract No. NAS7-100. 
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